H1 ANTIHISTAMINES IN ALLERGIC DISEASE

Cas Motala, MB ChB, FCPaeds(SA), FACAII, FAAAAI
Allergy Clinic, Division of Paediatric Medicine, School of Child & Adolescent Health, University of Cape Town & Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town, South Africa

ABSTRACT
Histamine (one of the key mediators released from mast cells and basophils), plays a major role in the pathophysiology of allergic diseases, including rhinitis, urticaria, asthma and anaphylaxis. Histamine exerts its effects through its interaction with one of four distinct receptors (H1, H2, H3, H4). In allergic disease, it is the H1 antihistamines which are of primary benefit, although H2 antihistamines may also play a therapeutic role.

H1 antihistamines remain first-line medications for the treatment of allergic rhinoconjunctivitis and urticaria. Second-generation antihistamines are preferred to their predecessors because of better benefit-to-risk ratios. The newer antihistamines are not only more potent, but also have anti-allergic and anti-inflammatory properties. Although they are more expensive than the traditional antihistamines, the cost is substantially offset by their superior efficacy and safety profile when used in recommended dosages.

CLASSIFICATION
H1 antihistamines are classified into the older, or first-generation, antihistamines, and the newer, or second-generation, antihistamines. The main differences between the two generations of drugs are their propensity to cause central nervous system (CNS) side-effects. The commonly used members of these drug classes are listed in Table I. The highly lipophilic nature of the first-generation antihistamines allows them to penetrate well into the CNS where they induce sedation. The potential to enhance the central effects of alcohol and other CNS sedatives further limits such use. In addition, many of these drugs also have actions which reflect their poor receptor selectivity, including an anticholinergic-like effect (anticholinergic) and blockade of both \(\alpha \)-adrenergic and 5-hydroxytryptamine receptors (muscarinic effect) Tachyphylaxis is also a problem with the use of the older antihistamines.

The second-generation H1 antihistamines cause much reduced CNS sedation and are essentially free of this effect at doses recommended for the treatment of allergic disorders. In addition, these drugs have few or no anticholinergic or other effects. Some second-generation drugs have also been claimed to have anti-allergic and anti-inflammatory effects which may contribute to their therapeutic benefit.

MECHANISM OF ACTION
H1 antihistamines are not receptor antagonists as previously thought, but are inverse agonists. When neither histamine nor antihistamine is present, the active and inactive states of the H1 receptor are in equilibrium or a balanced state. Histamine combines preferentially with the active form of the receptor to stabilise it and shift the balance towards the activated state and stimulate the cell (Fig. 1). Antihistamines stabilise the inactive form and shift the equilibrium in the opposite direction. Thus, the amount of histamine-induced stimulation of a cell or tissue depends on the balance between histamine and H1 antihistamines.

Histamine effects stimulated through the H1 receptor include pruritus, pain, vasodilatation, vascular permeability, hypotension, flushing, headache, tachycardia, bronchoconstriction, and stimulation of airway vagal afferent nerves and cough receptors as well as decreased atrioventricular-node conduction. Although most of the effects of histamine in allergic diseases are mediated by H1 receptor stimulation, certain effects such as hypotension, tachycardia, flushing, headache, itching and nasal congestion are mediated through both H1 and H2 receptors.

In the CNS, the effects histamine exerts through H2 receptors include cycle of sleep and waking, food intake, thermal regulation, emotion and aggressive behaviour, locomotion, memory and learning. First-generation H1 antihistamines, such as chlorphenamine, diphenhydramine, hydroxyzine and promethazine, penetrate readily into the brain, in which they occupy 50-90% of the H1 receptors. The result is CNS sedation. In contrast, second-generation H1 antihistamines penetrate the CNS poorly, as they are actively pumped out by P-glycoprotein, an organic anion transporting protein that is expressed on the luminal surfaces of vascular endothelial cells in the blood vessels that constitute the blood-brain barrier. Their propensity to occupy H1 receptors in the CNS varies from 0% for fexofenadine to 30% for cetirizine. Thus, second-generation H1 antihistamines are relatively free of sedating effects.

Through H2 receptors histamine has various effects on the immune system, including the maturation of dendritic cells and modulation of the balance of helper T-cell type 1 (Th1) and Th2 towards Th1. Histamine also induces the release of pro-inflammatory cytokines (pro-inflammatory activity). Because histamine has such effects on allergic inflammation and the immune system, treatment with H1 antihistamines reduces the expression of pro-inflammatory cell adhesion molecules and the accumulation of inflammatory cells, such as eosinophils and neutrophils. Major clinical effects of H1 antihistamines are seen in suppression of the early response to allergen challenge in the conjunctiva, nose, lower airway and skin.

Table I. Common H1 receptor antagonists

<table>
<thead>
<tr>
<th>First generation</th>
<th>Second generation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxyzine</td>
<td>Cetirizine</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>Loratadine</td>
</tr>
<tr>
<td>Chlorpheniramine</td>
<td>Desloratadine</td>
</tr>
<tr>
<td>Promethazine</td>
<td>Fexofenadine</td>
</tr>
<tr>
<td></td>
<td>Levocetirizine</td>
</tr>
</tbody>
</table>

*Two earlier developed agents, astemizole and terfenadine, were withdrawn in 1998 because of cardiac toxicity adverse effects.

Correspondence: Prof CasMotala, cassim.motala@uct.ac.za
PHARMACOKINETIC PROPERTIES

H1-receptor antagonists are well absorbed from the gastrointestinal tract after oral administration. Their onset of effect occurs within 1-3 hours; their duration of action varies from several hours to 24 hours, (second-generation drugs being generally around 24 hours) (Table II). First-generation antihistamines and some of the second-generation agents are oxidatively metabolised by the hepatic cytochrome P450 system, the exceptions being levocetirizine, cetirizine, and fexofenadine. Levocetirizine and cetirizine are excreted largely unchanged in urine and fexofenadine is excreted mainly in the faeces but also the urine. HEPATIC METABOLISM has several implications: prolongation of the serum half-life in patients with hepatic dysfunction and those receiving concomitant cytochrome P450 inhibitors, such as ketoconazole and erythromycin. Also, longer duration of action is found in elderly patients who have reduced liver function. In these patients there is a possibility of precipitating serious unwanted cardiac or CNS effects. Concomitant administration of probenicid reduces the total body and renal clearance of fexofenadine. The bioavailability of fexofenadine may be altered by simultaneous consumption of grapefruit juice (reduced rate and absorption of the drug by almost 30%) (However, grapefruit juice does not affect the absorption of other second-generation antihistamines. Although topical intranasal and ophthalmic H1 antihistamines differ in their pharmacokinetics, most of the topical preparations need to be administered twice daily because of the washout from the nasal mucosa or conjunctiva.

CLINICAL USES IN ALLERGIC DISEASE

H1 antihistamines currently constitute the largest class of medications used in the treatment of allergic disorder, allergic rhinoconjunctivitis and urticaria in particular. Formulations and dosages of the newer antihistamines are listed in Tables III and IV.

Table II. Pharmacokinetics of second-generation oral H1 antihistamines (mean ± SD)

<table>
<thead>
<tr>
<th>H1 antihistamines (metabolite)</th>
<th>T_max (h) after a single dose</th>
<th>Terminal elimination half-life (t1/2, h)</th>
<th>% eliminated unchanged in the urine/faeces</th>
<th>Duration of action (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetirizine</td>
<td>1.0 ± 0.5</td>
<td>6.5-10</td>
<td>60/10</td>
<td>≥24</td>
</tr>
<tr>
<td>Loratadine</td>
<td>1.2 ± 0.3</td>
<td>7.0 ± 4.2</td>
<td>Trace</td>
<td>24</td>
</tr>
<tr>
<td>Desloratadine</td>
<td>1.3</td>
<td>27</td>
<td>0</td>
<td>≥24</td>
</tr>
<tr>
<td>Fexofenadine</td>
<td>2.6</td>
<td>14.4</td>
<td>12/80</td>
<td>24</td>
</tr>
<tr>
<td>Levocetirizine</td>
<td>0.8 ± 0.5</td>
<td>7 ± 1.5</td>
<td>86</td>
<td>≥24</td>
</tr>
</tbody>
</table>

Adapted from Simons et al.7

Fig. 1. Simplified two-state compartment model of the histamine H1-receptor. Adapted from Leurs et al.3

PHARMACOKINETIC PROPERTIES

H1-receptor antagonists are well absorbed from the gastrointestinal tract after oral administration. Their onset of effect occurs within 1-3 hours; their duration of action varies from several hours to 24 hours, (second-generation drugs being generally around 24 hours) (Table II). First-generation antihistamines and some of the second-generation agents are oxidatively metabolised by the hepatic cytochrome P450 system, the exceptions being levocetirizine, cetirizine, and fexofenadine. Levocetirizine and cetirizine are excreted largely unchanged in urine and fexofenadine is excreted mainly in the faeces but also the urine. HEPATIC METABOLISM has several implications: prolongation of the serum half-life in patients with hepatic dysfunction and those receiving concomitant cytochrome P450 inhibitors, such as ketoconazole and erythromycin. Also, longer duration of action is found in elderly patients who have reduced liver function. In these patients there is a possibility of precipitating serious unwanted cardiac or CNS effects. Concomitant administration of probenicid reduces the total body and renal clearance of fexofenadine. The bioavailability of fexofenadine may be altered by simultaneous consumption of grapefruit juice (reduced rate and absorption of the drug by almost 30%) (However, grapefruit juice does not affect the absorption of other second-generation antihistamines. Although topical intranasal and ophthalmic H1 antihistamines differ in their pharmacokinetics, most of the topical preparations need to be administered twice daily because of the washout from the nasal mucosa or conjunctiva.

Allergic rhinoconjunctivitis

In patients with allergic rhinitis (AR) both first- and second-generation H1 antihistamines have proven to be highly effective in relieving sneezes, itching, and nasal discharge but not nasal blockage. First-generation H1 antihistamines have an unsatisfactory benefit-to-risk ratio in allergic rhinoconjunctivitis. In seasonal and perennial rhinitis, the evidence base for their use is small. Dosage recommendations are empirical. In seasonal AR, there is a large evidence base for the use of second-generation oral H1 antihistamines such as cetirizine, desloratadine, fexofenadine, loratadine. Efficacy has been well documented in hundreds of randomised, double-blind, placebo-controlled, parallel-group clinical trials involving thousands of participants. In perennial AR, the evidence base for second-generation H1 antihistamines use is growing and the efficacy of cetirizine, desloratadine, fexofenadine, loratadine, and levocetirizine has been documented. Regular daily administration is associated with a significant decrease in symptoms and nasal mucosal inflammation compared with ‘as needed’ or ‘on demand’ use. H1 antihistamines provide relief of allergic rhinitis comparable to that provided by intranasal cromolyn sodium 4% and are generally found to be less potent than intranasal corticosteroids in the treatment of AR symptoms. Leukotriene receptor antagonists (LRAs) may also be effective in certain patients with AR if combined with an antihistamine. In allergic conjunctivitis, the ocular symptoms induced by allergen, such as itching, tearing and reddening are reduced by administration of H1 antihistamines either systemically or topically as eye drops such as azelastine, ketotifen, levocabastine and olopatadine. Topical application usually results in faster onset of action – within 5 minutes – than oral administration.19
Table III. Formulations and dosages of second-generation oral antihistamines

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Formulation</th>
<th>Recommended dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetirizine</td>
<td>Tablet 10 mg, Syrup 5 mg/5 ml</td>
<td>Adult 5-10 mg od (6-11 yrs) 5-10 mg od (6-11 yrs) 6 mo - 5 yr 2.5-5 mg od</td>
</tr>
<tr>
<td>Loratadine</td>
<td>10 mg, Syrup 5 mg/5 ml</td>
<td>10 mg od (6-10 yr) 10 mg or (2-9 yr) 5 mg</td>
</tr>
<tr>
<td>Desloratadine</td>
<td>5 mg, N/A</td>
<td>5 mg od (≤12 yr) 5 mg od</td>
</tr>
<tr>
<td>Fexofenadine</td>
<td>60 mg, 120 mg, 180 mg, N/A</td>
<td>60 mg bd or 120-180 mg od or 120-180 mg od</td>
</tr>
<tr>
<td>Levocetirizine</td>
<td>5 mg, N/A</td>
<td>5 mg od (≤6 yr) 5 mg od</td>
</tr>
</tbody>
</table>

Table IV. Second-generation topical antihistamines

<table>
<thead>
<tr>
<th>Generic name</th>
<th>Formulation</th>
<th>Recommended dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azelastine</td>
<td>Nasal soln 0.1%</td>
<td>Adult & paediatric ≥12 yr: 2 sprays/nostril bd</td>
</tr>
<tr>
<td>Ketotifen</td>
<td>0.025% ophthalmic soln</td>
<td>Adult & paediatric ≥3 yr: 1 drop/eye bd</td>
</tr>
<tr>
<td>Levocabastine</td>
<td>Nasal spray 50 mg/puff</td>
<td>Adult: 2 sprays/nostril bd – qid</td>
</tr>
<tr>
<td>Olopatadine</td>
<td>0.1% ophthalmic soln</td>
<td>Adult & paediatric ≥3 yr: 1 drop/eye bd</td>
</tr>
</tbody>
</table>

Acute and chronic urticaria

H1 antihistamines are first-line medications in acute and chronic urticaria and very effective in providing symptomatic relief. The evidence base for the use of H1 antihistamines in acute urticaria remains small; however, recently, in a prospective, randomised, double-blind, placebo-controlled, 24-month-long study, high-risk children given cetirizine had significantly fewer episodes of acute urticaria than those given placebo.20 Although the evidence base for the use of first-generation H1 antihistamines in chronic urticaria is modest,31,32 in chronic urticaria, H1 antihistamines should optimally be given on a regular basis to prevent hives from appearing, rather than “as needed”.

Atopic dermatitis

In atopic dermatitis (AD), itching is one of the major symptoms and the resultant scratching usually causes worsening of the lesion. H1 antihistamines may relive itching and reduce scratching. Relief of itching by H1 antihistamines is often incomplete in AD, because the itching produced by mediators other than histamine is not down-regulated. H1 antihistamines appear to relieve itching mainly through their CNS effects and thus first-generation H1 antihistamines (sedating) such as hydroxyzine and diphenhydramine are more effective for relief of itching in this disorder than are the second-generation H1 antihistamines (non-sedating).24 However, recent studies have shown that second-generation medications such as cetirizine and loratadine may also relieve itching in AD.25-27 In higher doses, cetirizine has been demonstrated to have a topical glucocorticoid-sparing effect in AD.

Anaphylaxis

Adrenaline is the first-line treatment in anaphylaxis. Antihistamines are considered adjunctive treatment for relief of itching, urticaria, rhinorhoea, and other symptoms.28 Because first-generation H1 antihistamines such as chlorpheniramine, diphenhydramine, and hydroxyzine have high aqueous solubility and are available in parenteral formulations for injection, they continue to be widely used in the treatment of anaphylaxis. Most of the second-generation H1 antihistamines have low aqueous solubility and none is available in formulation for injection. Antihistamines also have a potential role in prevention of anaphylaxis. In anaphylaxis, many of the effects of histamine, such as vasodilation and hypotension, occur as a result of its effects at both H1 and H2 receptors.29-31 H1 and H2 antihistamines given concomitantly decrease the frequency and severity of these reactions, and routine prophylaxis with these medications has been proposed.29 The prophylaxis pretreatment or treatment with both an H1 and H2 antihistamine may be more effective than pretreatment with an H1 antihistamine alone. Second-generation H1 antihistamines, administered orally, prevent allergic reactions in patients receiving immunotherapy.30

Asthma

In asthma, current evidence does not support the use of antihistamines for treatment. However, second-generation antihistamines are reported to reduce symptoms of allergic asthma in certain patients and exacerbation of asthma in adult patients with AR. The amount of improvement produced by H1 antihistamines in asthma is modest.31

USE IN PREGNANCY AND LACTATION

Chlorpheniramine, one of the first-generation antihistamines, is reportedly safe in pregnancy. There is limited information on the use of the new antihistamines during pregnancy although cetirizine and loratadine are considered relatively safe for use during pregnancy (FDA category B).32-34 H1 antihistamines are excreted in small amounts in breast milk (<0.1% of a maternal dose). Breast-fed infants whose mothers have ingested first-generation antihistamines may experience irritability, drowsiness or respiratory depression;35 no symptoms have been attributed to second-generation antihistamines to date.

ADVERSE EFFECTS

The adverse effects of first-generation H1 antihistamines, mainly on the CNS, including drowsiness, impaired driving performance, fatigue, lassitude, and dizziness, are well documented. Other side-effects (anticholinergic) include dry mouth, urinary retention, gastrointestinal upset and appetite stimulation. Although the new-generation antihistamines are relatively free of serious CNS effects, a small number of individuals may experience sedation with these agents. Minor side-effects such as nausea, light-headedness, drowsiness, headaches, agitation and dry
mouth have been reported occasionally with the new antihistamines. Weight gain (due to increased appetite) has also been reported in a few patients treated with cetirizine. Hypersensitivity reactions, including skin rashes and angio-oedema may also occur. In recommended dosages, the new antihistamines are generally safe. Toxicity associated with the new antihistamines is usually related to increased drug levels (due to overdosage or impaired metabolism). Symptoms of overdosage include drowsiness and agitation (especially in children).

First-generation H1 antihistamines may cause tachycardia, supraventricular arrhythmia, and prolongation of the QT interval in a dose-dependent manner. Two second-generation antihistamines, astemizole and terfenadine, were withdrawn from the market because of their cardiac toxic effects (torsades de pointes and other potentially fatal ventricular arrhythmias). Cetirizine, levocetirizine, fexofenadine, loratadine and desloratadine appear to be free from cardiac toxicity even at higher than recommended doses.5,37

Declaration of conflict of interest

The author declares no conflict of interest.

REFERENCES