Abstracts are listed alphabetically within each section according to the name of the presenter of the paper. Please consult the congress programme for more details.

INVITED PRESENTATIONS

CRITICAL REVIEW OF FIVE GREAT ALLERGY PAPERS

Emil J Bardana, Jr, Oregon Health and Science University, Portland, Oregon, USA


This paper provides a comprehensive analysis of anaphylactic fatalities in the UK and cases of non-fatal anaphylaxis seen in allergy clinics. A fatal reaction is often the first reaction, and it is therefore difficult to predict who is at risk. Some fatalities are unavoidable, but treatment is not optimal in other cases. To reduce the risk of a subsequent fatal reaction, management after recovery from a severe reaction should include accurate identification of the cause and effective avoidance measures, optimal asthma control, and treatment for patients with food allergy, immunotherapy for venom allergy and training in self-treatment.


Specific immunotherapy benefits patients with perennial asthma caused by house-dust mite allergy, but patients receiving specific immunotherapy usually are also taking pharmacotherapy, and the added benefit of immunotherapy is unclear. This study demonstrates that immunotherapy can be safely administered to patients with perennial allergic asthma. However, it showed only modest evidence for a clinical benefit in patients receiving pharmacotherapy according to GINI guidelines.

INDOOR AIR QUALITY AND HEALTH: THE TOXIC MOULD ISSUE

Emil J Bardana, Jr, Oregon Health and Science University, Portland, Oregon, USA

There is an increasing awareness that poor indoor air quality may generate a variety of deleterious effects on human health. In recent years this has become a major public health concern. This is not surprising when one considers that we spend a majority of our time travelling or working in a succession of indoor microenvironments. Buildings have evolved with the purpose of protecting inhabitants from the elements. However, they do not protect dwellers from the effects of pollution. At times, home construction may even facilitate problems with indoor pollution. The quality of indoor air depends both on the quality of the outdoor air and the strength and nature of emissions of indoor sources. The sources of indoor pollution include the outdoor air quality, biologic exposures, chemical exposures and occupant activities.

Many investigations have indicated that the three major reasons associated with health complaints in building occupants are: 1) rapid new building occupancy; 2) building renovation, and 3) water or moisture incursion with subsequent microbial contamination, especially fungal proliferation.

Fungal contamination in buildings can vary greatly, and their presence in a dwelling does not necessarily constitute exposure. Measurement of mould spores and fragments varies depending on the methodology and instruments utilised. The presence of a specific immune response to a fungal antigen only connotes that exposure to one or more related species has occurred, but not that there is a symptomatic clinical state. The response of individuals to indoor bioaerosols is complex and depends on age, gender, state of health, genetic makeup, and degree and time of bioaerosol exposure.

When health effects occur as a result of fungal exposure, it is more likely to be transient annoyance or irritation reactions secondary to volatile organic compounds, glucans or proteases. Allergic symptoms may be related to mould proliferation indoors. However, because moulds are encountered both indoors and outdoors, it is difficult to determine where the sensitivity initially arose and if the adverse response is solely provoked by either an indoor or outdoor source. As an indoor allergen, mould is considered to be an frequent participant in the induction of allergic symptoms when compared to house-dust mite, animal dander and cockroach allergen. Infection in healthy individuals is rare and usually caused by an outdoor source. Building-related disease caused by inhalation of mycotoxins in conventional dwellings has never been proven scientifically.

THE CHANGING RELATIONSHIP BETWEEN ACADEMIA AND THE PHARMACEUTICAL INDUSTRY – THE VIEW FROM ACADEMIA

Sharon Kling, Dept Paediatrics & Child Health, University of Stellenbosch and Tygerberg Children’s Hospital, Tygerberg

The relationship between academia and the pharmaceutical industry is increasingly coming under scrutiny. Academics and society in general are concerned about accountability and transparency, and the influence that industry may exert on academic freedom. The areas that may cause conflict are research, education, and influencing physicians’ prescribing habits.

The current reality is that the pharmaceutical industry spends more on medical research in the United States of America than the National Institutes of Health. More than half of all clinical research is industry funded. Most research is done in-house by the pharmaceutical company or by contract research organisations. In South Africa contract research constitutes an important source of income for universities. This type of research is often regarded as less important or prestigious by academics.
Problems with industry-sponsored research are: the trial data are considered proprietary by the companies; selective reporting of data (reporting only the per protocol analyses and ignoring the results of intention-to-treat analyses); selective publication of studies; and ghostwriting of the articles. Conflict of interests may also arise if institutions are recipients of company sponsorship. The Nancy Olvieri case is an example of this conflict, in which the University of Toronto was in dispute with a clinical researcher who was concerned about the safety of an iron chelator in thalassaemia.

The role of the pharmaceutical industry in sponsoring continuing medical education may overlap with marketing of a product. The HFCSA has clear guidelines addressing funding for CPD activities. The funding should preferably be in the form of an educational grant payable to the health care provider arranging the activity, and should not be used for travel, accommodation or other expenses of attendees. Organisations such as No Free Lunch believe that drug company funding of education should be stopped, and that funding of such activities should be from independent sources.

The majority of authors of clinical practice guidelines have some form of financial relationship with the pharmaceutical industry. Thus of course is not surprising as their expertise is derived in part from clinical trials experience. The pharmaceutical industry is virtually the only sponsor of new drug research and development. The problem is that the pharmaceutical industry is very powerful and influential: it is one of the most profitable industries, it is global and it has strong relationships with politicians, especially in the USA.

The medical profession’s close relationship with the pharmaceutical industry has the potential to undermine its independence and its ability to do what is best for the patient. It needs to look at putting a greater distance between itself and industry, refusing to accept gifts and declaring conflicts of interest. Universities will also have to carefully judge their relationship with the industry and monitor the effect that this relationship has on its research. Those of us who are in academic medicine will have to ensure that researchers are protected from interference with disclosure of results and are able to express their opinions in academic settings and journals.

REFERENCES
4. Medical and Dental Professions Board. Perverse Incentives Policy.

THE NIGHTMARE OF ALLERGY - ANAPHYLAXIS - PHYLAXIS AND MANAGEMENT
Bob Lanier, Department of Pediatrics and Immunology, University of North Texas Health Science Center, Fort Worth, Texas

Anaphylaxis is a multi-system-immunologic reaction that occurs with re-exposure to an antigen previously processed. It is characterised as the massive release of chemical mediators including histamine, leukotriene C4, prostaglandin D2, and tryptase following antigen-specific cross-linking of IgE molecules or complement proteins on the surface of tissue mast cells and peripheral blood basophils. A grading system has been devised which may assist the practitioner in tailoring therapy and predicting biphasic reactions. A detailed office flow sheet for anaphylaxis simulation will be presented. Pre-treatment with anti-IgE will be discussed and clinical experience with anaphylaxis despite anti-IgE treatment will be shown. It is important for physicians engaged in immunotherapy, specifically RUSh or accelerated immunotherapy to understand the pathophysiology, know the treat-ment for, and recognise the clinical signs of anaphylaxis.

RETRO-FITTING FOR MEDICINE: HOW TO ADAPT STANDARD COMPUTER APPLICATIONS AND DEVICES TO IMPROVE PATIENT RECORDS AND COMMUNICATIONS WITH THE PATIENT AND THE REFERRING DOCTOR
Bob Lanier, Department of Pediatrics and Immunology, University of North Texas Health Science Center, Fort Worth, Texas

Medical applications for record keeping for many practitioners are extremely expensive both in outright purchase and in upgrade and maintenance. A system using standard off the shelf programs such as Microsoft Word integrated with digital cameras to produce an efficient system will be presented, as well as concepts for writing good consultant letters.

EXPERIMENTAL MODELS IN FOOD ALLERGY
Logata AL, Division of Immunology - Allergy Section, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, NHLS, University of Cape Town, South Africa

Identification of the offending allergen(s) and potentially cross-reactive structures is of paramount importance in order to practise appropriate allergen avoidance and eventually specific immunotherapy. Even a thorough clinical history is vital for any correct diagnosis, as it has been shown that in food allergy often only a small percentage of individuals with reported food hypersensitivity experienced symptoms when challenged with food. Therefore, objective in vitro and in vivo assays are mandatory to confirm clinical suspicion. The clinicians rely in daily practice upon quantification of specific IgE to a range of available allergens to confirm their clinical suspicion. The recent development of a novel tool of coupling new (indigenous) allergens to the Streptavidin-ImmunoCAP makes it possible to compare the quantitative results directly with the conventional ImmunoCAP. Even though these automated in vitro techniques are of outstanding reproducibility and specificity, they cannot give absolute diagnostic reliability. Recent efforts have increased the sensitivity of these automated assays and can now quantify IgE levels below 0.35 kU/L, which is of particular importance in patients with distinct clinical symptoms but negative serology. The other scenario is frequently observed in allergic reactions to plant allergens, where serological sensitisation is not confirmed by clinical manifestations. The reasons are often cross-reacting carbohydrate determinants (CCD) on glycol-proteins, causing mostly immunological problems during specific IgE detection. However, recent studies demonstrated clinical relevance in subgroups of patients sensitive to timothy grass and celery. The presence of specific IgE to CCDs on allergens can now be quantified using automated assays and might be of importance in non-conclusive diagnosis.

Hundreds of food allergens have already been identified and new ones are discovered almost weekly. Based on our current knowledge it seems to be clear that plant and animal food allergens belong to very few of the several thousand known protein families. However, several factors work together to result in the sensitisation of an atopic individual with any given allergen, such as the structure, chemical/ biophysical properties of the allergen. Recent advances in the identification of molecular structure of allergens made it possible to generate recombinant (biotechnologically produced) food allergens. These allergens, demonstrating comparable IgE binding to natural allergens, are recommended for so called ‘component-resolved diagnosis’ which is based on the specific antibody reactivity profile of an allergic patient. This knowledge is needed for patient-tailored allergen preparations to refine future immunotherapy. A very interesting example is the recent identification of the major allergen of strawberry, a lipid transfer protein (LTP). The recombinant allergen shows high cross-reactivity to LTP-allergens from apple and peach but seems to be less allergenic, as compared by functional cellular tests, making it very interesting for future immunotherapy. Recombinant allergens can also be used as additives to natural extracts to improve sensitivity of the assay (e.g. hazelnut) or used in automated assays to detect specific sensitivity (e.g. cherry). The activity of these generated allergens can also be compared with natural extracts in vivo using mouse models, which also address the differential response associated with the route of exposure.

Based on the previous findings functional in vitro assays have been recently developed which measure the activation of basophils. In addition to the CAST-assay, measuring released leucotrienes from activated cells, a flow cytometry test has been developed which quantifies the up-regulation of the cell-marker CD63. This assay has proven to be rapid (less than 3h) and a reliable diagnostic tool which allows simultaneous testing of several putative allergens with a minimal amount of blood. This is particularly useful in cases where the
Mechanisms of Allergen-Induced Asthma

Paul M O'Byrne, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada

Inhalation of environmental allergens is an important cause of asthma. Allergen inhalation into the lower airways results in the development of acute bronchoconstriction (the early response), and in more than half of subjects, the development of late bronchoconstriction (the late response) beginning 2-4 hours after inhalation, which can persist for up to 24 hours. These bronchoconstrictor responses are mainly mediated by cysteiny1 leukotriene and histamine. The late response is associated with an influx of inflammatory cells into the airways, mainly eosinophils, mast cells and basophils. The increased number of eosinophils can persist for up to 1 week after allergen inhalation, and this is temporally associated with upregulation of mediators important in eosinophilopoiesis and trafficking, namely interleukin (IL)-5, eotaxin and RANTES, and with the persistence of allergen-induced airway hyper-responsiveness.

Eosinophils are produced in the bone marrow from eosinophilia/basophil colony-forming units (Eo/B-CFU). These progenitors, in common with other marrow progenitors express the cell surface marker CD34. An important aspect of allergic inflammatory responses is the induction of increases in inflammatory cell progenitors, which contribute to disease through the continued production of inflammatory effector cells. We have demonstrated increased numbers of bone marrow Eo/B-CFU in asthmatic subjects after allergen inhalation. This study also indicated that after allergen challenge, the bone marrow is more responsive to IL-5, due to an upregulation of the IL-5 receptor on the surface of these cells. These results indicated that the responsiveness of the bone marrow to IL-5 after allergen is a determinant of the magnitude of the eosinophilic responses to inhaled allergen, and of the degree of the subsequent physiological abnormalities. Allergen-induced increases in bone marrow IL-5 also occur at these time points, mainly derived from an increase in bone marrow T-cells, possibly trafficking from the airways.

Inhaled corticosteroids inhibit the development of allergen-induced asthmatic responses and airway inflammation, an effect thought to be mediated through activity on airway cells. We have evaluated the ability of inhaled budesonide to attenuate allergen-induced increases in bone marrow Eo/B-CFU in allergic asthmatics. This study has demonstrated that inhaled budesonide (400 µg/day for 1 week), significantly reduced allergen-induced airway inflammation and increases in blood eosinophils, as well as the baseline numbers of bone marrow CD34+ cells and Eo/B-CFU. However, inhaled budesonide did not prevent the allergen-induced increases in Eo/B-CFU or CD34+(Eo+B)-SRO cells. These results indicate that while the baseline production of bone marrow eosinophil progenitors is reduced by inhaled corticosteroids, the allergen-induced increases are insensitive to their action.

Cysteinyl leukotrienes, released following allergen inhalation, are important in causing airway eosinophilia. We have recently shown that treatment with the leukotriene receptor antagonist, montelukast, markedly attenuates allergen-induced airway eosinophilia, to a degree similar to inhaled budesonide and reduced the bone marrow’s eosinophilopoiesis.

Dendritic cells (DCs) are the professional antigen-presenting cells in the airways. We have shown that there is a marked and rapid reduction in the numbers of circulating DCs within 3 h after inhaled allergen. This change is the largest in magnitude and most rapid of all the circulating cells measured. These findings suggest that trafficking of circulating DCs into the airways is a rapid event following allergen inhalation and that presentation of antigen in the airways may depend on the recruitment of DCs from the circulation, initiated by mediators released early after allergen inhalation. We subsequently demonstrated that a cys-LT1 receptor antagonist prevents this decline in circulating DCs, suggesting that cys-LTs are also involved in recruiting these cells into the airways.

Taken together, these studies have identified that both increased bone marrow production of IL-5 from T-cells and upregulation of its receptor on Eo/B progenitors are necessary for increased production of eosinophils after allergen inhalation, which are involved in the persistence of allergen-induced airway physiological abnormalities. The upregulation of the IL-5 receptor may be caused by cysteiny1 leukotrienes released following allergen inhalation. Cysteiny1 leukotrienes also play a pivotal role in the migration of DCs to and from the airways in response to inhaled allergens.

SELECTED REFERENCES


The Role of Leukotriene Receptor Antagonists in Wheezy Children

André van Nierkerk, Paediatrician, Private practice, Johannesburg

Wheezing (or asthma-like symptoms) occur in almost 50% of preschool children. In some these symptoms are self-limiting, but the remainder will unfortunately experience a spectrum of recurrent or persistent morbidity. The underlying pathology comprises another spectrum of possible airway abnormalities that often includes airway inflammation. Viral infection, or allergy, or both could induce this airway inflammation. Cysteinyl-leukotriene mediators are released during allergic and respiratory syncytial virus (RSV) induced inflammation.

RSV airway infection is a frequent initial cause for wheezing in young children and is also implicated in ongoing recurrent post-bronchiolitis wheeze. The potential of RSV infection to further initiate allergy-related wheeze has also been debated. Other respiratory viruses (especially rhinovirus) also contribute significantly to the frequency and severity of acute asthma exacerbations in known asthmatic patients.

This spectrum of airway pathology and asthma-like symptoms in wheezy children poses diagnostic and therapeutic dilemmas. Inhaled corticosteroids (ICS) play an important role in the prevention and treatment of asthma symptoms in patients suffering from allergic airway inflammation, but they do not contribute significantly to protection in those patients suffering from infection-virus-induced exacerbations.

The leukotriene receptor antagonists (LTRAs) - the first new class of anti-asthma medication in more than twenty years - offer documented efficacy in the management of chronic asthma. LTRAs were initially positioned as add-on therapy to inhaled ICS in patients not controlled on a medium dose of ICS alone. Emerging data now support their use as possible monotherapy in persistent asthma. The role of LTRAs as part of rescue therapy in acute asthma exacerbations is also being explored.

A recent randomised trial initiated hope for the potential role that a LTRA (montelukast) could play in alleviating RSV postbronchiolitis symptoms. Another recent publication demonstrated montelukast (compared to placebo) to significantly reduce the rate of asthma symptoms.
exacerbations in 2-5-year-old children suffering from intermittent viral-induced asthma exacerbations. These effects observed in viral-related wheezers – a large group of wheezy children with little guidance for treatment – suggest that the role of LTRAs may expand beyond that of chronic asthma.

REFERENCES

CHALLENGES IN THE MANAGEMENT OF ASTHMA IN SOUTH AFRICA
Heather J Zar, School of Child and Adolescent Health, Red Cross Children’s Hospital, University of Cape Town, South Africa
Asthma is common in South African children, with approximately 10% of schoolgoing children experiencing symptoms. Furthermore, the prevalence appears to be increasing both in urban and rural areas. Asthma has therefore become one of the commonest chronic diseases and an important cause of health care utilisation. However, diagnosis and management of childhood asthma in South Africa poses unique challenges especially as the majority of South African children receive care in the public sector and are not covered by health insurance. South African guidelines for the diagnosis and management of childhood asthma, produced by the Allergy Society of South Africa and the South African Thoracic Society, provide a comprehensive guide to diagnosis and treatment. In addition, the South African essential drug list for primary care includes inhaled bronchodilators and corticosteroid metered dose inhalers. Nevertheless, implementation of such guidelines is difficult. Potential challenges to optimal asthma management in South Africa include:

Access and affordability of drugs. Inhaled therapy, the current standard of care for both prophylaxis of persistent asthma and relief of acute attacks, may be unavailable or unaffordable; lack of low-cost spacer devices further limits use of such therapy. The availability of effective new drugs such as combination inhalers or leukotriene receptor antagonists is likewise limited by cost. Even amongst those children who have health insurance, limitations on what medicines are covered and who may prescribe such therapy may impede access to effective asthma management.

Need for a low-cost spacer device. Underuse of inhaled therapy may also be due to lack of spacer devices, which are not included in the South African essential drug list. Homemade spacer devices such as a 500 ml plastic cold drink bottle have been developed for use when conventional spacers are unavailable or unaffordable. For young children, a mask needs to be attached to a bottle-spacer. Correct adaptation and use of such homemade devices need to be incorporated into asthma guidelines and educational initiatives to gain widespread acceptability and use.

Health system infrastructure. Poor access to care, particularly in impoverished rural communities may be a major obstacle to effective asthma management. Lack of transport, long distances to the nearest health facility and poor telecommunication facilities may further complicate management.

Cultural issues. Cultural barriers and misconceptions regarding the safety and efficacy of therapy may impact on patient or parent acceptability of such therapy. Language barriers may impede the ability to provide effective patient or parent education and lead to discordance in provider and patient/parent understanding. This can be especially challenging in places where multiple languages exist and where no specific words for some of the asthma terminology such as ‘wheeze’ exist.

Use of traditional healers. In South Africa, patients/parents frequently seek help from traditional healers first; healers may be important educators. The place of traditional healers in asthma management deserves further consideration.

Education of health care professionals. Continuing medical education is necessary for health care providers to be informed as to the optimal and most effective asthma management strategies. Use of inhaled corticosteroids as preventative therapy is still widely underprescribed, similarly overuse of nebulester therapy (rather than metered dose inhaler with spacer) is widespread.

Environmental determinants. Many children with asthma live in sub-optimal conditions with crowding, exposure to passive smoke and indoor fuels. Improvement of living conditions and caregiver education regarding smoking cessation remain formidable challenges.

POSTER PRESENTATIONS

NATURAL HISTORY OF MILK ALLERGY IN ATOPIC CHILDREN
D Hawarden,1 B Fenemore,1 L Hill,2 G Poggenpoel,1 I Schloss,3 G Stear,1 M Levin,1 L Bruck,3 P Potter1
1Allergy Diagnostic and Clinical Research Unit (ADCRU), UCT Lung Institute, George Street, Mowbray, Cape Town, South Africa
2Nutrition and Dietetics, Groote Schuur Hospital, Cape Town, South Africa
3Allergy Clinic, Red Cross Children’s Hospital, Rondebosch, Cape Town, South Africa
Background: Cow’s milk (CM) exclusion diets are commonly used in the treatment of childhood CM allergy (CMA), but may adversely affect these children’s quality of life (QOL), thus making unnecessary CM-exclusion diets undesirable.

Aim: To investigate the progression of childhood CMA children following CM-exclusion diets, as well as to evaluate the role of food challenges in reassessment of CMA.

Methods: A retrospective cohort study was conducted in which 21 CM-allergic children (13 boys and 8 girls) with ≥ 9 months CM-exclusion, underwent radiol allergicorsorbent test (RAST) and skin prick tests (SPT). Parents completed a case history questionnaire. Children with CM-RAST <30 kU/l (age ≥2 years) or <10 kU/l (age <2 years) and without history of anaphylaxis or systemic disease underwent CM food challenges performed by a dietician.

Results: Fifteen subjects (71.4%) had had CM exposure since origin of diagnosis. Of these, 8 (53.3%) had no allergic response and proportionately these children showed no more new allergic symptoms than those without CM-exposure (Pearson χ² co-efficient = 0.0080, p=0.776). No immediate reactions and 1 delayed reaction followed CM-challenges. CMA impacted on QOL of child and family.

Conclusion: Reassessing CMA following a 9 months CM-exclusion can prevent unnecessary CM-exclusion diets. Food challenges in combination with RAST and SPT should play an integral role in CMA diagnosis and reassessment.

SENSITISATION TO AERO-ALLERGENS AND FOOD ALLERGENS IN INFANTS WITH ATOPIC DERMATITIS IN SOUTH AFRICA
PC Potter1 M de Longueville2 for the EPAACTM Study Group
1Allergy Diagnostic and Clinical Research Unit (ADCRU), UCT Lung Institute, George Street, Mowbray, Cape Town, South Africa
2Brauine l’Allende, Belgium
Background: EPAACTM (Early Prevention of Asthma in Atopic Children), a multi-centre, multi-country study to investigate the potential of leucovorin to prevent the development of asthma in high-risk infants with atopic dermatitis, has completed enrolment. An epidemiological analysis of the data recorded for all the children screened in the frame of the EPAACTM study has been performed. Very few sensitisation data in 1-2-year-old children with atopic parent(s) are available for South Africa as well as standardised comparison with other continents.

Methods: Children aged 1 to 2 suffering from atopic dermatitis and...
with a family history of asthma were screened before potential inclusion in the EPAACTM study. Information and potential risk factors related to allergy as well as total and specific IgE were measured. Total and specific IgE were measured by the Pharmacia CAP system.

Results:
1. 2 184 infants between 1 and 2 years of age with atopic dermatitis were screened in 12 countries and 514 randomised in the EPAACTM Study. 161 children from South Africa were screened.
2. The distribution was not very different to the distribution of sensitisation in the 301 infants screened in Australia: House-dust mite 33.5%, Grass Pollen GX1 10.3%, Cat 19.5%, Alternaria 7.4%, Egg 54.4%, Cow’s milk 32.6%, Peanut 45.0%.
3. Peanut sensitisation in South Africa was lower than in Australia, but higher than for the EPAAC whole group. 11 infants (7.2%) in South Africa and 104 infants (4.9%) in the overall population had levels above 14 kU/l, predictive of challenge positive sensitisation (Sampson et al. 2002).
4. Only 2 infants were sensitised to GX2 (containing Bermuda Grass, an important South African Aero-allergen) but not to GX1.

Conclusion: The prevalence of aeroallergen sensitisation in infants with eczema is very similar in the 2 southern hemisphere countries (RSA and Australia) participating in the EPAACTM study. Concordant sensitisation to both of the 2 major sensitising grass pollen groups in South Africa (represented by Rye and Bermuda) occurs in infancy and monosensitisation to the Bermuda grass is relatively uncommon.

Identification of peanut sensitisation is important, particularly since 7.2% of the infants with eczema were found to have levels which are above the predicted threshold (15 kU/l) for challenge positive allergy to peanuts. This has important implications for patient management and follow-up.

FREE PRESENTATIONS

ENVIRONMENTAL EXPOSURE TO FLOUR DUST AMONG BAKERY WORKERS IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA: RESULTS OF A PRELIMINARY STUDY

Bakerties R, Meijster T,1 Lopata AL,2 Heederik D,3 Jeebhay MF
1 Occupational and Environmental Health Research Unit, School of Public Health and Family Medicine, University of Cape Town, South Africa
2 Department of Food & Chemical Risk Analysis, TNO Chemistry, Zest, The Netherlands
3 Institute for Risk Assessment Sciences, Utrecht University, The Netherlands

Background: Inhalable dust is the predominant substance in bakery dust and is considered a potential causative factor in the development of occupational asthma. The aim of this study was to determine the variability in flour dust levels, bakers had the highest average (geometric mean) particulate dust concentration (0.125 mg/m3). Similarly, in respect of the distribution of wheat allergen levels, bakers had the highest average (geometric mean) allergen concentration (16.504 µg/m3), followed by confectioners (7.307 µg/m3). There was a high degree of colinearity between inhalable dust and wheat allergen concentrations (Spearman r=0.92, p<0.001). Models with job title on its own explained the greatest variability in particulate concentration (adjusted r²=0.522, p<0.001) as well as wheat allergen concentration (adjusted r²=0.692, p<0.001). Adding bakery size (small, medium, large) into the model explained a greater variability in particulate concentration (adjusted r²=0.558, p<0.001) and wheat allergen concentration (adjusted r²=0.701, p<0.001). Sample day and bakery size, however did not explain any of the variability observed.

Conclusion: This study demonstrates that bakers have the highest 8-h average dust exposures, compared to confectioners and counterhands. Furthermore, job title explained the greatest variability in exposure observed over the working shift. The findings of this study are consistent with the 43-50% variability observed for job title as an explanatory variable in other international studies among bakery workers. The findings also suggest that flour dust particulate exposure could be used as a proxy for wheat allergen concentrations in this group of bakers.

OCCUPATIONAL ALLERGY AND ASTHMA IN SMALL BAKERIES OF A SUPERMARKET CHAIN STORE IN SOUTH AFRICA

Jeebhay MF,1 Baertties R,1 Lopata AL,2 Sander 17, Rauf-Hiemsoth M,1 Warnard V,2 Bateman E,3 Robbos TG
1 Occupational and Environmental Health Research Unit, School of Public Health and Family Medicine, University of Cape Town, South Africa
2 Division of Immunology, Faculty of Health Sciences, NHLS, University of Cape Town, South Africa
3 Research Institute of Occupational Medicine of the Berufgenossenschaften (BGFA), Ruhr-University, Bochum, Germany
4 UCT Lung Institute, University of Cape Town, South Africa
5 Department of Environmental Health Sciences, University of Michigan, USA

Background: The food industry in South Africa employs 180 000 workers with 10%, mainly bakers, handling grain mill products. This sector reports over 25% of occupational asthma cases. This study aimed to determine the prevalence of work-related symptoms, allergic sensitisation, non-specific bronchial hyper-responsiveness (NSBH) and baker’s asthma in small bakeries of a supermarket chain store.

Methods: A cross-sectional study of 517 (current and previously employed) bakers was conducted in 31 Cape Town bakeries using a modified European Community Respiratory Health Survey (ECRHS) questionnaire. Skin prick tests (SPT) used extracts of common aeroallergens (ALK) and cereal flour allergens (Bencard) (wheat, rye, barley, soya, oats, corn flour), fungal alpha-amylase, and peanut and storage mite (L. destructor). ImmunoCAP (UniCAP Pharmacia) for wheat, rye and fungal alpha-amylase were also used. NSBH was assessed using the Medic Aid Pro Nebulizer Dosimeter method.

Results: The mean age of bakers was 32 years. The prevalence of atopy (positive SPT to ≥ 1 common allergen and allergic symptoms) was 29%. Common work-related symptoms were ocular-nasal (31%), chest tightness/wheezing (17%) and skin symptoms (11%). 27% of bakers had positive SP ≥ 1 cereal flours/additives. Most common sensitisers were cereal flours: rye (16%), wheat (16%), corn (14%), barley (12%), oats (8%), soya (8%) and storage mites (14%). SPT sensitisation to peanut (6%) and fungal alpha amylase (3%) was lower. A higher proportion had elevated IgE levels to wheat (26%) and rye (24%). The prevalence of work-related allergic rhino-conjunctivitis (symptoms and wheal/rice sensitisation) was much higher (16%) than chest symptoms (8%). NSBH defined as PD20 <0.03 was present in 22% (n=419) of bakers. Overall, 11% demonstrated occupational asthma (NSBH and sensitisation to flour products/additives). Occupational asthma associated with rye/wheat (9-10%) was more common than with fungal alpha-amylase (2%). Atopy was significantly associated with sensitisation (OR: 5.1, CI: 3.4-7.9) and occupational asthma due to cereal flours/additives (OR: 9.4, CI: 4.5-19.5).

Conclusion: The overall 11% prevalence of baker’s asthma in South African chain store bakeries is lower than the 15-21% reported for traditional and industrial bakeries. Cereal flours such as wheat and
rye appear to be more important in causing asthma than additives such as fungal enzymes.

WORK-RELATED RESPIRATORY ALLERGY ASSOCIATED WITH STORAGE PESTS AND MITES AMONG GRAIN MILL WORKERS IN THE WESTERN CAPE

Jeelbay MF, Baatjies R, Lopata AL
1 Occupational and Environmental Health Research Unit, School of Public Health and Family Medicine, University of Cape Town
2 Division of Immunology, Faculty of Health Sciences, NHLS, University of Cape Town

Background: Exposure to grain dust is associated with a number of adverse allergic health outcomes including conjunctivitis, rhinitis, urticaria/dermatitis and asthma. These clinical manifestations are the result of a multitude of allergens and bioactive materials present in the grain dust. The aim of this study was to assess the patterns of sensitivity to various storage pests among grain mill workers and their relationship to work-related respiratory symptoms and asthma.

Methods: This is a sub-study of the cross-sectional study previously conducted on 111 workers employed in a grain mill in Cape Town. The study instruments included a questionnaire based on the American Thoracic Society (ATS) questionnaire, and specific IgE determinations on serum obtained from workers. Blood samples were analysed by ImmunoCAP using the UniCAP® System (Pharmacia Diagnostics AB, Uppsala, Sweden) for house-dust mites (Dermatophagoides pteronyssinus, Dermatophagoides farinae), storage mites (Blomia tropicalis (d201), Lepidoglyphus destructor (d71) and Tyrophagus putrescentiae (d72)), cockroaches (Blatella germanica, Periplaneta americana, Blatta orientalis), beetles (Tenebrio molitor (Ri202)) and mould (Alternaria alternata, Aspergillus fumigatus, Aspergillus niger, Penicillium section Aspergillus, Cladosporium herbarum, Mucor, Rhizopus, Penicillium, Alternaria versicolor, Mucor racemosus). According to the ImmunoCAP scoring system, a positive score was any value greater than 0.35 kU/l.

Results: Among this group of 111 workers, the majority (89%) were men and 49% smokers. The prevalence of IgE reactivity to house-dust mite (41%) was very similar to reactivity to at least one grain dust allergen (42%) viz. cereal grains, insects and mites. Reactivity patterns to storage mites were similar to wheat (26%), while the dust mite (41%) was very similar to reactivity to at least one grain dust. Among the cockroaches, B. orientalis appeared to generate the strongest immune response. Very high statistically significant linear correlations (Spearman r = 0.75-0.9) were found between dust mites and storage mites, and between cockroaches and beetles, indicating the existence of similar allergens. Among the group of grain mill workers studied, the prevalence of work-related asthma symptoms such as wheeze and tight chest was 13% and 5% respectively, while 7% of workers were being treated for doctor-diagnosed asthma. IgE reactivity to cockroach (B. orientalis) was significantly (p=0.05) associated with work-related asthma (wheeze) as were cockroach species (B. orientalis) in atopic workers (workers with elevated IgE reactivity to house dust mite).

Conclusion: Allergens from storage pests (mealworm and cockroach) in grain mill dust is a significant predictor of work-related asthma symptoms. This is particularly evident in atopic workers who demonstrated increased IgE reactivity to mealworm (Tenebrio molitor) and cockroach (B. orientalis) associated with work-related asthma symptoms.

THE ASSOCIATION OF BRONCHIAL HYPER-RESPONSIVENESS AND AERO-ALLERGEN SENSITISATION IN URBAN BLACK AFRICAN SCHOOL CHILDREN IN SOUTH AFRICA

M Levis, C Motala
Allergy and Asthma Clinic, Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town

Background: There are not many data on the correlation between specific allergen sensitisation and bronchial hyper-responsiveness (BHR) in Black African children.

Aim: A study was conducted to ascertain the prevalence of bronchial hyper-responsiveness in an urban black African population and its correlation with specific allergen sensitization.

Results: Xhosa children were selected from an urban school in Mowbray, Cape Town. Subjects were tested for an exaggerated response to methacholine administered by the Yann method. A positive response was defined a fall in FEV1 of 20% or greater following challenge. Sensitisation to Der P, Der F, Grass mix, Bermuda grass, mould mix, cat, dog, cockroach, egg, milk, peanut and potato was assessed using skin prick testing (ALK®) with a positive result being wheal size >3mm larger than a negative control. Correlations were assessed by the Chi squared test utilising the Yates correction.

Methods: 212 urban children, aged 17-21 years underwent testing. 33 (15.6 %) children had a positive methacholine challenge. The prevalence of skin sensitivity to allergens was as follows:

There was a significant correlation between positive methacholine challenge and sensitivity to any aeroallergen (p=0.0000). This association was strongly significant for Der P, Der F, Cockroach (all p=0.0000) and Cat (p=0.0007). There was no association between positive methacholine challenge and sensitivity to any food.

Aeroallergen SPT positive number (%) BHR number (%)

<table>
<thead>
<tr>
<th>Allergen</th>
<th>SPT positive number (%)</th>
<th>BHR number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>68 (32.1)</td>
<td>24 (72.7)</td>
</tr>
<tr>
<td>Der P</td>
<td>52 (24.5)</td>
<td>22 (66.7)</td>
</tr>
<tr>
<td>Der F</td>
<td>49 (23.1)</td>
<td>21 (63.6)</td>
</tr>
<tr>
<td>Cockroach</td>
<td>37 (17.5)</td>
<td>15 (45.5)</td>
</tr>
<tr>
<td>Grass</td>
<td>11 (5.2)</td>
<td>3 (9.1)</td>
</tr>
<tr>
<td>Bermuda Grass</td>
<td>9 (4.2)</td>
<td>4 (12.1)</td>
</tr>
<tr>
<td>Dog</td>
<td>6 (2.8)</td>
<td>1 (3.0)</td>
</tr>
<tr>
<td>Cat</td>
<td>5 (2.4)</td>
<td>4 (12.1)</td>
</tr>
<tr>
<td>Mould</td>
<td>2 (0.9)</td>
<td>1 (3.0)</td>
</tr>
</tbody>
</table>

Conclusions: Bronchial hyper-responsiveness is associated with aeroallergen sensitization in an urban Black African population. Housedust mite and cockroach sensitivities are the dominant prevalences in this subgroup of children, similar to that in inner city children in the USA. Skin prick tests may be a useful investigation in the assessment of asthma and bronchial hyper-reactivity in such subjects.

Acknowledgements: Glazo-SmithKline, the Allergy Society of South Africa, the UCT School of Child and Adolescent Health, Labspec and Pharmacia.

TOTAL IgE AND SPECIFIC ALLERGEN PROFILE IN URBAN BLACK AFRICAN SCHOOL CHILDREN IN CAPE TOWN

M Levit, C Motala
Allergy and Asthma Clinic, Red Cross War Memorial Children’s Hospital, Rondebosch, Cape Town

Background: The usefulness of total IgE level in the assessment of atopy has been disputed in black Africans, due to possible confounding with parasitic infestation and ethnic variation in IgE levels. Prior research in this cohort shows an association between higher total IgE levels with other measures of allergy such as a history of asthma and current bronchial hyper-responsiveness. However recent research (Calvert et al, 2004) shows high prevalence of infection >60% with Ascaris in a similar population, which is significantly associated with a raise in total IgE.

Aim: A study was conducted to ascertain the total IgE levels and their correlation with specific allergen sensitisation (skin prick tests) and Ascaris sensitisation (CAP-RAST) in an urban black African population.

Methods: 220 urban Xhosa (mean age 17 years) attending a high
Sensitisation to three Cockroach Species in Southern Africa


1 Division of Immunology, IIDMM/Allergy Section, University of Cape Town, Cape Town, South Africa
2 Occupational and Environmental Health Research Unit, University of Cape Town, Observatory, Cape Town, South Africa

Background: Cockroaches are important allergen sources in many countries, and are a major factor for rhinitis and asthma. The prevalence of cockroach sensitivity varies between countries, especially in the tropics. Cockroaches produce several allergens that are major risk factors for rhinitis and asthma. Worldwide, the prevalence of cockroach sensitivity varies between 30% and 70%. Geographical differences exist with regard to cockroach allergen exposure and sensitivity within and between countries. No data are available for Africa in this regard. Currently, the diagnosis of cockroach sensitivity in southern Africa relies mainly on the detection of specific IgE to Blattella germanica (German cockroach), as the number of other species are found close to human dwellings. The aim of this study was to investigate the prevalence and distribution of sensitisation to three different cockroach species among subjects residing in four different geographical regions in southern Africa.

Method: The patient cohort was selected from allergic children tested for skin-prick test positive to B. germanica. Twenty children (age 2-17 years) each from Cape Town (Red Cross Hospital), Durban (Westville Hospital) and Pretoria (Military Hospital) were analysed for specific IgE antibodies to three different cockroach species. The specific IgE response in serum samples was quantified by using the UniCAP® System for Blatella germanica (6), Periplaneta americana (2) and B. orientalis (2). In addition 40 adult allergic patients from Harare (Zimbabwe) were analysed for cockroach specific IgE antibodies. Cross-reactivity studies on selected subjects were performed by Cockroach-ImmunoCAP (B. germanica)-inhibition assay with house-dust mite extract, as previously described.

Results: Strong IgE reactivity particular to B. germanica was found among subjects residing in Pretoria and Harare. By contrast strong IgE responses to other cockroach species, Periplaneta americana and Blatta orientalis, were observed in subjects living in Cape Town and Durban. The levels of specific IgE antibodies to all three cockroach species appeared to be higher in Cape Town than those from the other three cities investigated. Non-sensitisation to all three cockroach species was observed and minimal crossreactivity to house-dust mite.

Conclusions: These data show that allergy to P. americana and B. orientalis are an important diagnostic consideration in temperate and coastal regions of southern Africa, whereas sensitisation to B. germanica appears to predominate in regions of higher altitude such as Pretoria and Harare.

Anisakis pegreffii contains potent sensitising antigens

Niewouateni N, Lopata A, Jeebhay M, Brombacker F

1 Division of Immunology, Faculty of Health Sciences, Groote Schuur Hospital (NHLs), University of Cape Town, Observatory, Cape Town, South Africa
2 Occupational and Environmental Health Research Unit, University of Cape Town, Observatory, Cape Town, South Africa

Background: Anisakis pegreffii, a nematode that infects fish, is able to cause both infection and allergies in man. The present study examines allergic responses against A. pegreffii in South African fish processing workers, and uses gene deficient mice to investigate the immunology of A. pegreffii.

Methods: 578 fish processing workers were tested for Anisakis sensitivity and specific IgE levels using skin-prick testing and RAST. Western blots were performed against A. pegreffii crude extract using serum from sensitised workers, non-sensitised controls and infected mice. Wildtype, IL-4 knockout and IL-4αR knockout mice were infected with live A. pegreffii larvae and the cytokine and antibody responses measured by ELISA. Sensitised mice were challenged orally with A. pegreffii extract and examined for symptoms, histopathology and mast cell proteases.

Results: 8% of workers were sensitised to Anisakis, producing specific IgE against a wide range of allergens. A similar pattern of allergen recognition was found in mice infected intraperitoneally with A. pegreffii. The worm induced a strong Th2-type 2 response with IL-4, IL-5, IL-9, IL-13 and antigen specific IgG1/IgE, typical for many gastrointestinal helminth infections. Importantly, when challenged orally with A. pegreffii extract, mice produced a response typical of food allergy, with itching, diarrhoea and airway mucus hypersecretion. IL-4 knockout mice had reduced symptoms, while symptoms were completely abrogated in IL-4 receptor-alpha knockout mice. Surprisingly, oral dosing of mice with A. pegreffii alone and no adjuvants resulted in production of type 2 antibodies IgG1 and IgE.

Conclusions: These data show that A. pegreffii contains potent sensitising allergens, and that both IL-4 and IL-13 play a role in Anisakis allergy.

Allergen sensitivities of patients with allergic rhinitis presenting to the ENT clinic at Universitas Academic Hospital, Bloemfontein

K Ry, Seeraj J, Rautenbach G, Steenkamp J, Venter G, Jouhert

Departments of Otorhinolaryngology and Biostatistics, Universitas Academic Hospital and University of the Free State, Bloemfontein

Aims: The aims of the study were to review the presenting symptoms and allergen sensitivities as determined by skin-prick testing of patients with allergic rhinitis presenting to the ENT clinic at Universitas Academic Hospital, Bloemfontein.

Methods: The records of all patients with allergic rhinitis confirmed...
by skin-prick testing at the ear, nose and throat clinic at Universitas Academic Hospital between 1 January 2004 and 31 January 2005 were reviewed.

Results: A total of 97 patients were identified. The age of the patients ranged between 4 and 71 years (median 26 years). There were 65 (67%) females and 32 (33%) males. Nasal obstruction was the most common symptom, being present in 78% of patients, followed by watery rhinorrhoea (57%) and sneezing (40%). Allergen sensitivities were: Bermuda grass (55%), maize pollen (55%), Rye grass (36%), Alternaria alternata (25%), Platanus acerifolia (24%), Dermatophyoides pteronyssinus (23%), dog epithelia (20%), cat epithelia (14%), Lepidoglyphus destructor (13%) and Olea europaea (13%). Bermuda grass was a significantly more common allergen in patients living in an urban environment compared to a rural environment, while there was no significant difference in the prevalence of the other allergens when comparing patients from an urban as opposed to a rural environment. Sensitisation to Lepidoglyphus destructor was not significantly more common in patients living on farms. There was no association between sensitisation to Lepidoglyphus destructor and sensitisation to Dermatophyoides pteronyssinus. 16 patients (16.4%) had asthma and 8 patients (8.2%) had eczema.

Conclusions: Nasal obstruction is the most common presenting symptom of allergic rhinitis. Bermuda grass, maize pollen and Rye grass are the most common causative allergens in the Free State.